Mathematical Induction

Write the induction proof statements $\boldsymbol{P}_{_{1}}$, $\boldsymbol{P}_{_{k}}$, and $\boldsymbol{P}_{_{k+1}}$ for each conjecture.

1)
$$P_n$$
: 11 + 19 + 27 + ··· + 8 n + 3 = $n(4n + 7)$

2)
$$P_n$$
: $7^n - 4^n$ is divisible by 3

3)
$$P_n: 4^n \ge 4n$$

Use mathematical induction to prove that each statement is true for all positive integers

4)
$$36 + 324 + 900 + \dots + (12n - 6)^2 = 12n(4n^2 - 1)$$

5) 3 is a factor of $4^n + 2$

6) $7^n \ge 7n$

Mathematical Induction

Date Period

Write the induction proof statements P_1 , P_k , and P_{k+1} for each conjecture.

1) P_n : 11 + 19 + 27 + \cdots + 8n + 3 = n(4n + 7)

$$P_1$$
: 8 + 3 = 4 + 7

$$P_i$$
: 11 + 19 + 27 + \cdots + 8 k + 3 = $k(4k + 7)$

$$P_{k+1}$$
: 11 + 19 + 27 + ... + 8k + 3 + 8(k + 1) + 3 = k(4k + 7) + 8(k + 1) + 3

2) $P: 7^n - 4^n$ is divisible by 3

$$P_1$$
: $7^1 - 4^1$ is divisible by 3

 P_k : $7^k - 4^k$ is divisible by 3. Therefore, $7^k - 4^k = 3r$ for some integer r.

$$P_{k+1}$$
: $7^{(k+1)} - 4^{(k+1)}$ is divisible by 3

3) $P_n: 4^n \ge 4n$

$$P_1: 4^1 \ge 4 \cdot 1$$

 P_k : $4^k \ge 4k$ for some positive integer $k \ge 1$

$$P_{k+1}$$
: $4^{k+1} \ge 4(k+1)$

Use mathematical induction to prove that each statement is true for all positive integers

4) $36 + 324 + 900 + \dots + (12n - 6)^2 = 12n(4n^2 - 1)$

Let P_n be the statement $36 + 324 + 900 + \dots + (12n - 6)^2 = 12n(4n^2 - 1)$

Anchor Step

 P_1 is true since $(12-6)^2 = 12(4 \cdot 1^2 - 1)$

Inductive Hypothesis

Assume that P_k is true: $36 + 324 + 900 + \dots + (12k - 6)^2 = 12k(4k^2 - 1)$

Inductive Step

We now show that P_{k+1} is true:

$$36 + 324 + 900 + \dots + (12k - 6)^{2} + (12(k + 1) - 6)^{2} = 12k(4k^{2} - 1) + (12(k + 1) - 6)^{2}$$

$$48k^{3} - 12k + (12k - 6)^{2}$$

$$48k^{3} - 12k + 144k^{2} + 144k + 36$$

$$48k^{3} + 144k^{2} + 132k + 36$$

$$12(4k^{3} + 12k^{2} + 11k + 3)$$

$$12(4k^{3} + 12k^{2} + 12k + 4 - k - 1)$$

$$12(4(k^{3} + 3k^{2} + 3k + 1) - (k + 1))$$

$$12(4(k + 1)^{3} - (k + 1))$$

Conclusion

By induction P_n is true for all $n \ge 1$.

 $12(k+1)(4(k+1)^2-1)$

5) 3 is a factor of $4^n + 2$

Let P_n be the statement 3 is a factor of $4^n + 2$

Anchor Step

 P_1 is true: 3 is a factor of $4^1 + 2$

Inductive Hypothesis

Assume that 3 is a factor of $4^k + 2$. Therefore, $4^k + 2 = 3r$ for some integer r.

Inductive Step

We now show that P_{k+1} is true: 3 is a factor of $4^{(k+1)} + 2$

$$4 \cdot 4^{k} + 2$$

$$(3+1) \cdot 4^{k} + 2$$

$$3 \cdot 4^{k} + 4^{k} + 2$$

$$3 \cdot 4^{k} + 3r$$

$$3(4^{k} + r)$$

Conclusion

By induction P_n is true for all $n \ge 1$.

6) $7^n \ge 7n$

Let P_n be the statement $7^n \ge 7n$

Anchor Step

 P_1 is true: $7^1 \ge 7 \cdot 1$

Inductive Hypothesis

Assume that P_{k} is true: $7^{k} \ge 7k$ for some positive integer $k \ge 1$

Inductive Step

We now show that P_{k+1} is true:

$$7^{k} \ge 7k$$
 $k \ge 1$
 $7 \cdot 7^{k} \ge 7 \cdot 7k$ $42k \ge 42 \ge 7$
 $7^{k+1} \ge 49k$
 $7^{k+1} \ge 7k + 42k$
 $7^{k+1} \ge 7k + 7$
 $7^{k+1} \ge 7(k+1)$

Conclusion

By induction P_n is true for all $n \ge 1$.